9,105 research outputs found

    Rate theory for correlated processes: Double-jumps in adatom diffusion

    Get PDF
    We study the rate of activated motion over multiple barriers, in particular the correlated double-jump of an adatom diffusing on a missing-row reconstructed Platinum (110) surface. We develop a Transition Path Theory, showing that the activation energy is given by the minimum-energy trajectory which succeeds in the double-jump. We explicitly calculate this trajectory within an effective-medium molecular dynamics simulation. A cusp in the acceptance region leads to a sqrt{T} prefactor for the activated rate of double-jumps. Theory and numerical results agree

    Selfduality for coupled Potts models on the triangular lattice

    Get PDF
    We present selfdual manifolds for coupled Potts models on the triangular lattice. We exploit two different techniques: duality followed by decimation, and mapping to a related loop model. The latter technique is found to be superior, and it allows to include three-spin couplings. Starting from three coupled models, such couplings are necessary for generating selfdual solutions. A numerical study of the case of two coupled models leads to the identification of novel critical points

    High-energy neutrino fluxes from AGN populations inferred from X-ray surveys

    Get PDF
    High-energy neutrinos and photons are complementary messengers, probing violent astrophysical processes and structural evolution of the Universe. X-ray and neutrino observations jointly constrain conditions in active galactic nuclei (AGN) jets: their baryonic and leptonic contents, and particle production efficiency. Testing two standard neutrino production models for local source Cen A \citep{KT2008,BB2009}, we calculate the high-energy neutrino spectra of single AGN sources and derive the flux of high-energy neutrinos expected for the current epoch. Assuming that accretion determines both X-rays and particle creation, our parametric scaling relations predict neutrino yield in various AGN classes. We derive redshift-dependent number densities of each class, from {\it Chandra} and {\it Swift}/BAT X-ray luminosity functions \citep{SGB2008,ACS2009}. We integrate the neutrino spectrum expected from the cumulative history of AGN (correcting for cosmological and source effects, e.g. jet orientation and beaming). Both emission scenarios yield neutrino fluxes well above limits set by {\it IceCube} (by 4\sim 4--106×10^6 \times at 1 PeV, depending on the assumed jet models for neutrino production). This implies that: (i) Cen A might not be a typical neutrino source as commonly assumed; (ii) both neutrino production models overestimate the efficiency; (iii) neutrino luminosity scales with accretion power differently among AGN classes and hence does not follow X-ray luminosity universally; (iv) some AGN are neutrino-quiet (e.g. below a power threshold for neutrino production); (v) neutrino and X-ray emission have different duty cycles (e.g. jets alternate between baryonic and leptonic flows); or (vi) some combination of the above.Comment: 16 pages, 6 figures, 3 tables, accepted for publication in MNRA

    Improved Resolution and Reduced Clutter in Ultra-Wideband Microwave Imaging Using Cross-Correlated Back Projection: Experimental and Numerical Results

    Get PDF
    Microwave breast cancer detection is based on the dielectric contrast between healthy and malignant tissue. This radar-based imaging method involves illumination of the breast with an ultra-wideband pulse. Detection of tumors within the breast is achieved by some selected focusing technique. Image formation algorithms are tailored to enhance tumor responses and reduce early-time and late-time clutter associated with skin reflections and heterogeneity of breast tissue. In this contribution, we evaluate the performance of the so-called cross-correlated back projection imaging scheme by using a scanning system in phantom experiments. Supplementary numerical modeling based on commercial software is also presented. The phantom is synthetically scanned with a broadband elliptical antenna in a mono-static configuration. The respective signals are pre-processed by a data-adaptive RLS algorithm in order to remove artifacts caused by antenna reverberations and signal clutter. Successful detection of a 7 mm diameter cylindrical tumor immersed in a low permittivity medium was achieved in all cases. Selecting the widely used delay-and-sum (DAS) beamforming algorithm as a benchmark, we show that correlation based imaging methods improve the signal-to-clutter ratio by at least 10 dB and improves spatial resolution through a reduction of the imaged peak full-width half maximum (FWHM) of about 40–50%

    Ground state magnetic structure of Mn3_3Ge

    Full text link
    We have used spherical neutron polarimetry to investigate the magnetic structure of the Mn spins in the hexagonal semimetal Mn3_3Ge, which exhibits a large intrinsic anomalous Hall effect. Our analysis of the polarimetric data finds a strong preference for a spin structure with E1gE_{1g} symmetry relative to the D6hD_{6h} point group. We show that weak ferromagnetism is an inevitable consequence of the symmetry of the observed magnetic structure, and that sixth order anisotropy is needed to select a unique ground state

    Silk-fibronectin protein alloy fibres support cell adhesion and viability as a high strength, matrix fibre analogue

    Get PDF
    Silk is a natural polymer with broad utility in biomedical applications because it exhibits general biocompatibility and high tensile material properties. While mechanical integrity is important for most biomaterial applications, proper function and integration also requires biomaterial incorporation into complex surrounding tissues for many physiologically relevant processes such as wound healing. In this study, we spin silk fibroin into a protein alloy fibre with whole fibronectin using wet spinning approaches in order to synergize their respective strength and cell interaction capabilities. Results demonstrate that silk fibroin alone is a poor adhesive surface for fibroblasts, endothelial cells, and vascular smooth muscle cells in the absence of serum. However, significantly improved cell attachment is observed to silk-fibronectin alloy fibres without serum present while not compromising the fibres' mechanical integrity. Additionally, cell viability is improved up to six fold on alloy fibres when serum is present while migration and spreading generally increase as well. These findings demonstrate the utility of composite protein alloys as inexpensive and effective means to create durable, biologically active biomaterials.T32 EB006359 - NIBIB NIH HH

    Synchrotron Mössbauer spectroscopic study of ferropericlase at high pressures and temperatures

    Get PDF
    The electronic spin state of Fe^(2+) in ferropericlase, (Mg_(0.75)Fe_(0.25))O, transitions from a high-spin (spin unpaired) to low-spin (spin paired) state within the Earth’s mid-lower mantle region. To better understand the local electronic environment of high-spin Fe^(2+) ions in ferropericlase near the transition, we obtained synchrotron Mössbauer spectra (SMS) of (Mg_(0.75),Fe_(0.25))O in externally heated and laser-heated diamond anvil cells at relevant high pressures and temperatures. Results show that the quadrupole splitting (QS) of the dominant high-spin Fe^(2+) site decreases with increasing temperature at static high pressure. The QS values at constant pressure are fitted to a temperature-dependent Boltzmann distribution model, which permits estimation of the crystal-field splitting energy (Δ_3) between the d_(xy_ and d_(xz) or d_(zy) orbitals of the t_(2g) states in a distorted octahedral Fe^(2+) site. The derived Δ_3 increases from approximately 36 meV at 1 GPa to 95 meV at 40 GPa, revealing that both high pressure and high temperature have significant effects on the 3d electronic shells of Fe^(2+) in ferropericlase. The SMS spectra collected from the laser-heated diamond cells within the time window of 146 ns also indicate that QS significantly decreases at very high temperatures. A larger splitting of the energy levels at high temperatures and pressures should broaden the spin crossover in ferropericlase because the degeneracy of energy levels is partially lifted. Our results provide information on the hyperfine parameters and crystal-field splitting energy of high-spin Fe^(2+) in ferropericlase at high pressures and temperatures, relevant to the electronic structure of iron in oxides in the deep lower mantle

    The Z2Z_2 staggered vertex model and its applications

    Full text link
    New solvable vertex models can be easily obtained by staggering the spectral parameter in already known ones. This simple construction reveals some surprises: for appropriate values of the staggering, highly non-trivial continuum limits can be obtained. The simplest case of staggering with period two (the Z2Z_2 case) for the six-vertex model was shown to be related, in one regime of the spectral parameter, to the critical antiferromagnetic Potts model on the square lattice, and has a non-compact continuum limit. Here, we study the other regime: in the very anisotropic limit, it can be viewed as a zig-zag spin chain with spin anisotropy, or as an anyonic chain with a generic (non-integer) number of species. From the Bethe-Ansatz solution, we obtain the central charge c=2c=2, the conformal spectrum, and the continuum partition function, corresponding to one free boson and two Majorana fermions. Finally, we obtain a massive integrable deformation of the model on the lattice. Interestingly, its scattering theory is a massive version of the one for the flow between minimal models. The corresponding field theory is argued to be a complex version of the C2(2)C_2^{(2)} Toda theory.Comment: 38 pages, 14 figures, 3 appendice

    Logarithmic observables in critical percolation

    Full text link
    Although it has long been known that the proper quantum field theory description of critical percolation involves a logarithmic conformal field theory (LCFT), no direct consequence of this has been observed so far. Representing critical bond percolation as the Q = 1 limit of the Q-state Potts model, and analyzing the underlying S_Q symmetry of the Potts spins, we identify a class of simple observables whose two-point functions scale logarithmically for Q = 1. The logarithm originates from the mixing of the energy operator with a logarithmic partner that we identify as the field that creates two propagating clusters. In d=2 dimensions this agrees with general LCFT results, and in particular the universal prefactor of the logarithm can be computed exactly. We confirm its numerical value by extensive Monte-Carlo simulations.Comment: 11 pages, 2 figures. V2: as publishe
    corecore